
12 Angry Developers –
A Qualitative Study on

Developers’ Struggles with CSP

Sebastian Roth, Lea Gröber, Michael Backes, Katharina Krombholz, Ben Stock

CISPA Helmholtz Center for Information Security

Cross-Site Scripting (XSS)

1. XSS Payload
https://vuln.com?pl=<script src=evil.com>

4. HTTP GET Request evil.com

5. HTTP Response of evil.js

CCS 2021 - Roth - 12 Angry Developers 1

Content Security Policy (CSP)

1. XSS Payload
https://vuln.com?pl=<script src=evil.com>

4. HTTP GET Request evil.com

5. HTTP Response of evil.js

CCS 2021 - Roth - 12 Angry Developers 2

Content Security Policy (CSP)

CSP (2012) CSP (2014) CSP (2016)

Requires the Content Security Policy:

script-src

https://ad.com

https://company.com

'unsafe-inline'

<html>

<body>

<!-- ad.com includes company.com -->

<script

src="https://ad.com/someads.js">

</script>

<script>

// ... meaningful inline script

</script>

</body>

</html>

Requires the Content Security Policy:

script-src

https://company.com

'nonce-d90e0153c074f6c3fcf53'

Requires the Content Security Policy:

script-src

'nonce-d90e0153c074f6c3fcf53'

'strict-dynamic'

<html>

<body>

<script nonce="d90e0153c074f6c3fcf53">

let script =

document.createElement("script");

script.src = "http://ad.com/ad.js";

document.body.appendChild(script);

</script>

</body>

</html>

<html>

<body>

<!-- ad.com includes company.com -->

<script nonce="d90e0153c074f6c3fcf53"

src="https://ad.com/someads.js">

</script>

<script nonce="d90e0153c074f6c3fcf53">

// ... meaningful inline script

</script>

</body>

</html>

CCS 2021 - Roth - 12 Angry Developers 3

Previous Work

4CCS 2021 - Roth - 12 Angry Developers

Complex Security Policy? – A Longitudinal Analysis of Deployed Content Security Policies

Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and Ben Stock

Network and Distributed System Security Symposium (NDSS '20)

[1]

[1][1]

Not many sites are using CSP… … and those that do, misconfigure it.

1. What are the root causes of insecure practices when deploying a CSP?

2. What strategies do developers adopt when creating a CSP?

3. How well do developers understand the associated threat models of CSP?

4. What are the perceptions and motivations of developers in terms of deploying a CSP?

Research Questions

CCS 2021 - Roth - 12 Angry Developers 5

Technical
Perspective

Human
Perspective

Methodology

6CCS 2021 - Roth - 12 Angry Developers

Semi-Structured Interview

Incl. Drawing & Coding Task

Interview Transscription

Open Coding Process

Find Motivations, Strategies,

and Roadblocks of CSP

Drawing Task

7CCS 2021 - Roth - 12 Angry Developers

▪ Setup:

- Participants were asked to draw and
explain their favorite XSS attack.

- … and later asked where CSP would
block the execution of malicious JS

▪ Server-side XSS was exclusivly drawn

- Only one mentioned client-side XSS

▪ Two participants actively mentioned XSS
as server-side problem and also reported
that CSP is enforced by the server.

Motivations

8CCS 2021 - Roth - 12 Angry Developers

• XSS Mitigation

• Resource Control

• Framing Control

• TLS Enforcement

• Data Connection Control

• Pentest / Consulting

• Additional Security Layer

• Reputation

• Role Model

• Security Training

• Build Pipeline Warning

• Financial Implications

Attack Mitigation External Motivation

Information
Sources

Application Browsers

Company

Developer

3rd Parties

• Browser Inconsistency
• Browser Console Messages
• False Positive Reports
• Insufficient Reports
• Browser Extensions

• Inline JavaScript
• Inline Events
• Legacy Code

• Framework Support
• 3rd-party Services
• 3rd-party Libraries

• Different Development Teams
• Financial Consequences

• Lack of bigger picture
• Misleading claims

• CSP Complexity
• Knowledge Gaps
• Conceptual Issues
• Built-in Sec. Features
• Security is 2nd Goal
• Engineering Effort
• CSP Maintenance
• Amount of Reports

9CCS 2021 - Roth - 12 Angry Developers

Roadblocks

Strategies

10CCS 2021 - Roth - 12 Angry Developers

Initial

Deployment

Deployment

Principles

Problem

Solving

Strategies

• …Inline Code

• …Inline Events

• …3rd- Party
Code

• Report-Only to debug live App

• In-the-field Testing

• Iterative Deployment

• CSP Integral Part of Development

• One general CSP

• Separate CSP for Subpages

• Functionality > Security

• Use Meta Tag CSP

• Used Tools during Deployment

• Restrictive Report-Only Policy

• Restrictive Enforcement Policy

• Lax CSP

• Start with generated CSP

• Use tools for Initial Deployment

Results: Problem Solving Strategies

11CCS 2021 - Roth - 12 Angry Developers

• Externalize inline code

• Allow inline code using the content hash

• Tools to help with inline code

• Use unsafe-inline as fallback

• Nonce inline scripts

Inline Code

• Externalize events

• Changing functionality

• Use the script-src-attr directive

• Allow events using their content hash

• Use unsafe-inline

Inline Events

• Self-host 3rd-Party code

• Remove dependencies

• Nonce 3rd-Party code
3rd- Party Code

▪ The browser vendors:

- Mitigate 3rd-Party impact:

• Restricting API access (SecurerContexts[1])

• Seperate first and 3rd-Party Code

- Improve Documentation, Console messges,
and reporting APIs

▪ We, as a community:

- Better Information Sources

- Better Tools

How can we improve the situation?

CCS 2021 - Roth - 12 Angry Developers 12

[1] Mike West – SecurerContexts

https://github.com/mikewest/securer-contexts

Conclusion

13

